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Abstract

In this paper, we present an iteration method to compute the least squares
stochastic solutions of the matrix equation AX = B. Numerical experiments

are given to illustrate the usefulness of the proposed approach.
1. Introduction

Markov chains theory are widely used in the economic activities
forecasting, queuing theory, and particle technology [2, 4, 6, 7]. The key
problem of using Markov chains to predict the future state of a system 1is
to compute the transition probability matrix. The transition probability
matrix X may be obtained by solving the state matrix equations AX = B

with unknown matrix X satisfies Xe = e and X > 0, where e is a vector
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of all ones. However, the state matrices A and B, in general, are obtained
from market statistics or experimental analysis, and it may be not
satisfies the above matrix equation. In this case, one hopes to find the
smallest correction stochastic solution X of the inconsistent matrix
equation AX = B. This leads to consider the following constrained least

squares problem:
minimize  f(X) = 2 |AX - B[,
subject to Xe =¢, X > 0, (1.1)

where A, Be R™",e=(11,...,1)7 € R™". The problem (1.1) is

always solvable, and when the matrix A has full column rank, then the
problem (1.1) has an unique solution for any matrix B. In this paper, we
present an iteration method to compute the solutions of the problem (1.1).
Numerical experiments are given to illustrate the usefulness of the

proposed approach.

Throughout this paper, R"™" denotes the set of m x n real matrices.
AT, |A|, and ¢r(A) denote the transpose, the trace, and the Frobenius
norm of the matrix A, respectively. For the matrices A = (a;;), B = (),
A ® B denotes the Kronecker product defined as A ® B = (a;B),
A e B denotes the Hadamard product defined as A e B = (q;;b;; ), and
the inequality A > B(A > B) means that a;; > b;; (a;; > b;;) for all i

and j. Defining the inner product in space R™*" by
(4, B) = tr(BTA), vA, Be R™".

Obviously, R™" is a Hilbert inner product space and the norm of a

matrix generated by this inner product space is the Frobenius norm.
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2. Iterative Method to Solve Problem (1.1)

Note that the solution X* of the problem (1.1) must satisfy the
optimality Karush-Kuhn-Tucker (KKT) conditions

ATAx - ATB-veT — 7 =0,
Xe = e,
2.1)
XeZ =0,
X>0,7Z>0.

Hence, solving the problem (1.1) is equivalent to solve the optimality KKT

conditions matrix equations (2.1) for X, Y, and Z. We use the predictor-

corrector interior-point method (research results for this method, see
references [1, 3, 5, 8-18]) to solve (2.1). The predictor step, we first solve

the following matrix equations to obtain the affine scaling search

direction (AX?, AY?, AZ?) for the current iterate (X, Y}, Z},):

AT AAXY — AY %" —AZ% = ATB- ATAX, + Vel + Z,,
AX% = e - Xpe, (2.2)
Zk OAXa-i-Xk .AZa=—Xk .Zk7

and then we compute the maximum possible step length o, by satisfying

the following matrix equations:
Xp +a,AXY 20, Zp +a,AZY > 0. (2.3)

The corrector step, we first compute the corrector search direction

(AX, AY, AZ) by solving the following matrix equations:
ATANX - AYel —AZ = ATB - ATAX), + Yyl + Z,,
AXe = e — Xpe, (2.4)

Zp e AX + X, e AZ = peel — X}, 0 Z), — AX® 0 AZ?,
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with
na Zna
w=(=%)" =,
(M e

where n, = tr((X; + 0, AX?)(Z, + 0,AZ%)) and n = tr(XF Z,), then
we choose the maximum possible step length o by satisfying the

following matrix equations:

Xk +oaAX =0, Zk + oaAZ > 0. (2.5)

According to above discussions, the predictor-corrector interior-point
method to solve constrained least squares problem (1.1) can be described

as follows.

Algorithm 2.1. (Computing the solution of constrained least squares
problem (1.1)):

(1) Input matrices A, B, e. Given initial matrices X, > 0, Z; > 0,
Yy, and tolerances ¢q, €9, €3 2 0.

@2 For k=12 .., until |ATB-ATAX, + Vel +Z,| < e,
le = Xpe| < &2, and [ X}, o Zp| < 23.

(1) Predictor step:

e Computing the predictor direction (AX?, AY?, AZ?) by solving the
matrix equations (2.2).

e Computing the maximum possible step length o, by solving the

matrix inequalities (2.3).

(11) Corrector step:
e Computing n, =tr((X + 0, AX?)(Z), + a,AZ%)), n = tr(XF Zy,),

andu:(%a)”—g.
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e Computing the predictor-corrector direction (AX, AY, AZ) by

solving the matrix equations (2.4).

e Computing the maximum possible step length o by solving the

matrix inequalities (2.5).
(111) Update:

Xpi1 = Xp +0AX, Yo, =Y, +aAY, Zp. =Zp+aAZ.

In the implement of the Algorithm 2.1, the maximum possible step length

0, in (2.3) and o in (2.5) are usually chosen as

—(Xp )y —(Z2)::
0, = min {1, c- min M, ¢- min ( k)lj },
i, j:0X{":<0 AX;‘ i, j:AZ <0 Azg.
(X).. (7).
o = min {1, C- min M c- : ( k )l]

min —
i, j:0X;;<0  AXj; i,j:0Z;j<0  AZj g

for some c¢ € (0, 1), which is called as the step length parameter and, in

practice, it is usually chosen as a fixed number from the interval
(0.9, 1.0). To do this way is to avoid take a step all the way to the

boundary.

The calculation of the search directions, that is solving linear matrix
equations (2.2) and (2.4), are the most time-consuming and space-
occupying steps in the implement of the Algorithm 2.1. In this paper, we

propose the following iteration method to compute the search directions.

Algorithm 2.2. (Computing the solution of the matrix equations (2.2)
and (2.4)):

(1) Input A, B, e, the k-th approximate X}, Z;, Y}, of Algorithm 2.1.
Given initial matrices AX, AY,, AZ;, and a tolerance ¢ > 0.
Computing F = — X}, e Z; when solving the matrix equations (2.2) and

F = pee’ — X, o Z, — AX?® ¢ AZ® when solving the matrix equations (2.4).

Computing
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R = (ATB - ATAX), + Vye +Z;) - (AT AAX, - AYpe! - AZy),
RZ,O :(e—Xke)—AXOe,

Rs o =F —(Zy ¢ AX( + X}, e AZy),

)

ag = | Ryol? +[Ra.0l® + [ Rs,0l

P o= ATAR, o + Ry ge” +Z; o Ry g,
Py o =—Ry ge,

P3sg=-Ry g+ XpeRsp,

Bo = |PLol® + [P0l +1Ps.0l™

@2)Fori=0,1,2,..., until B; <«

w
AXjyy = AX; + 50D,

w
AY; 1 = AY; +B_;P2,i’

AZjq = AZ; + g—iiP&i,
Ry = (ATB- ATAX), + YeT + Z,) - (ATAAX .y - AY e’ - AZ;,y)
=Ry —;—Z(ATAPLL‘ —Pyel - Py ),
Ry i1 = (e — Xpe) - AX; e
= Ry _g_iipl,ie,
Rsipn =F —(Zp o AX; 1y + X, ¢ AZ; )

=Ry ; _E_Z(Zk oP i +X P ;)

a1 = |By i |P + | Be il +1Rs i s
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P =ATAR, ;,y + Ry ;1€ +Z, o Ry ;1\ + 221 P,
1,i+1 1,i+1 2,1+1 k 3,i+1 o 1,i>
Py iy =Ry e+ aé—?Pzi,

— 041
Py iy =Ry + Xp ¢ By jg + == Ps i,

Bt = I1PLiaal® + 1Py |” + [Psinl.
For the Algorithm 2.2, we have the following propositions:
Proposition 2.1. For the sequences {Ry;}, {Ry ;}, {Rs;}, {P;}
{Py;}, and {Ps;} generated by Algorithm 2.2, if there exists a positive
number k such that B; # 0 for all i=0,1,2, ..., k, then we have
aj = |Ryi|? +|Roi* +|RsilP 20 for all i=0,1,2 ...,k and the
following two equalities hold:
tr(PLP )+ tr(Pl Py )+ tr(PLiPy 1) =0, (i, j = 0,1, 2, -, ki # j),
(2.6)
tr(RL;Ry j)+tr(R3 Ry ;) +tr(R3 R3 ;) =0,(i, j=0,1,2 -,k i=j).
(2.7

Proposition 2.2. Suppose (AX, AY, AZ) be arbitrary solution of the

matrix equations (2.2) or (2.4), then we have

r[(AX - AX;)T P 1+ or[(AY - AY;) Py 1+ 0r[(AZ - aZ;)' Py ;]

= | Ruill® + |1 Ro,il® + [ Rsil?, i=0.1,2 ... 2.8)

Proposition 2.3. Algorithm 2.2 breaks down within finite iteration
steps in the absence of roundoff errors. Furthermore, if Algorithm 2.2

breaks down at i-th iteration step, then, when B; =0 and a; =0, the
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matrix equations (2.2) (or (2.4)) is solvable and (AX;, AY;, AZ;) is its a
solution. When B; = 0 and a; # 0, the matrix equations (2.2) (or (2.4))

has no solution.

The proof of Propositions 2.1, 2.2, and 2.3 is given in the Appendix.
3. Numerical Examples

In this section, we give a numerical example to illustrate the
application of the problem (1.1) and the efficiency of the methods
proposed in this paper. Our computational experiments are done on a HP
Compaq Presario CQ45-203TX with 2.0GHz and 2.0 ram. All the tests
were performed by MATLAB 7.0, which runs on the operating system
windows XP professional. In Algorithm 2.2, the initial iterative matrices

AX,, AYy, and AZ; are chosen as zero matrices in suitable size, and the

tolerance ¢ = 10710, In Algorithm 2.1, the initial iterative matrices X

and Z, are chosen as the matrices with all elements equal to one, Y| is

chosen as zero matrix, and the tolerances ¢; = g5 = €3 = 10710,

Example 3.1. Assume that a goods is only made by three
manufacturers. The market occupancy distribution of these three
manufacturers in the past six months is given as follows Table 1. If, in
nearly future time, people’s consumption pattern and enterprise
technology have not changed. There is also no other enterprise make this
kind of goods. We are required giving the market occupancy distribution

of these three manufacturers in the next six months.

Table 1. The market occupancy distribution in the past six months

1 2 3 4 5 6

Manufacturer 1 0.4666 0.4533 0.4551 0.4423 0.4113 0.4207 0.4087

Manufacturer 2 0.3633 0.3432 0.3312 0.3308 0.3211 0.3107 0.3074

Manufacturer 3 0.1701 0.2035 0.2137 0.2269 0.2676 0.2686 0.2839
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Applying Markov chains theory to forecast this economic activities,
we need first to find the transition probability matrix X by solving state

matrix equation AX = B. From Table 1, the state matrices A and B are

as follows:
0.4666 0.3633 0.1701 0.4533 0.3432 0.2035
0.4533 0.3432 0.2035 0.4551 0.3312 0.2137
0.4551 0.3312 0.2137 0.4423 0.3308 0.2269
A = 5 B = )
0.4423 0.3308 0.2269 0.4113 0.3211 0.2676
0.4113 0.3211 0.2676 0.4207 0.3107 0.2686
0.4207 0.3107 0.2686 0.4087 0.3074 0.2839

which do not satisfy AX = B, Xe = ¢, and X > 0. In other words, there

1s no stochastic matrix X such that AX = B. In this case, we hope to find
the smallest correction stochastic solution X of the inconsistent matrix

equation AX = B, that is, find the solution of the problem (1.1). Using
Algorithms 2.1 and 2.2, we obtain the transition probability matrix X as

follows:
0.4346 0.4535 0.1118
X =10.6618 0.3382 0.0000 |.
0.0860 0.0491 0.8649
Using state distribution formula w(t+1)=w(@)X,t =1, 2, ..., where

w(t)T e R? is the probability distribution vector in state ¢, we get the

market occupancy distribution of these three manufacturers in the next

six months as follows:
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Table 2. The market occupancy distribution in the next six months

7 8 9 10 11 12

Manufacturer 1 0.4055  0.4020 0.3993 0.3972  0.3954 0.3940

Manufacturer 2  0.3033  0.3008 0.2986 0.2969  0.2956 0.2945

Manufacturer 3 0.2913  0.2973 0.3021 0.3059  0.3090 0.3115

Note that the transition probability matrix X satisfies

0.3884 0.2900 0.3216

lim X" =]0.3884 0.2900 0.3216 |,

n—0

0.3884 0.2900 0.3216

we know that the fixed market occupancy distribution of these three
manufacturers is (0.3884, 0.2900, 0.3216).

(1]

(2]

(3]

(4]

(5]

(6]

(7
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Appendix

Proof of Proposition 2.1. If there exists a positive number % such

that B; #0 for all i =0,1, 2,---, B, the conclusion a; # 0 obviously

holds. Since (A, B) = (B, A) holds for all matrices A and Bin R™", we

only need to prove the conclusions (2.6) and (2.7) hold for all

0 < j < i < k. Using induction and the following two steps are required:
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Step 1. Show that
T T T _ s .
tr(PLiPLj ) + tr(Pg’iPQ’j ) + tl"(P3’iP3’j) =0, (] =0,1= ]_, 2,

and

-, k), (8.1)

tr(RL;R, ;) +tr(RY ;Ry ;) +tr(R3 ;Rs ;) =0,(j=0,i=12 -, k).(32)

To prove these conclusions, we also using induction.

For j =0,7 =1, we have

o
t’“(R1T,1Rl,0) = (R, Ry o - ﬁ(ATAPLo - Pz,oeT ~-P39))
Ao T T
= |Ry,o|” _E<R1,O’ ATAP, )~ Py e’ —P3)

(04
= |Ry ol - ﬁ[(ATARLo, P o)~ (Ri0e Pyo)

- (R0, P5.0)],
[0}
t’“(RgT,1Rz,0) = (Ry,0, Ry 0 —B—(?Pwe)

o
= |Ry,o | ‘B—(?(Rz,oeT, P o)
tr(RY Ry o) = (R0, Rao— 20 (Z, e P g+ Xy oPs )
rihg 14 o 3,0> 13,0 Bo k 1,0 + Xp 3,0)

o
= |Rs o —B—(?(Rs,o, ZpoeP o+ XpePs)

o
= | R o _B_(())sz * R3¢, P o) +(Xp ¢ Ry, P30)l]

Sum up above three equalities, we have

T T T
tr(Ri 1Ry o) +tr(Rg 1Ry o)+ tr(R31Rs3 )
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= 0 —g—g«ATARLo + Ry ge” + Zj, » Ry 0, Py o)
—(Ry ge, Py o)+ (= Ry o + X ¢ Ry 0, P3))
= oo = g IR0l + 1P +[Ps 0] = 0.
Analogously, we have
tr(P1PLo) = (Pro, ATARy | + Ry je” +Zj ¢ Ry, + z_(l)Pl,O>
= Z—;HPLOHZ +(Po, ATARy 1 + Ryye” +Z) ¢ Ry 1)

(04
= (1) |PLol? +(ATAP o, Ri1)+ (P oe, Ro1)

=L
+(Zp P o, Rs1),

o
tr(PlePz,o) = (Pa,0, — Ry e +$P2,0>

o
= Oc_1"P2’O"2 - (PZ,OQT’ R1,1>,
0

o
tr(PgaP?,,o) = (P30, — Ry 1+ X}, ®Rs; +a—(1)P3,0>
o
= a—é”P&o"Z +(Ps 0, —Ry1 +Xp ¢ Ry 1)

o
= (X—(l)”Ps,o”2 ~(Py o, By 1) +(Xp ®Ps, Ry 1)

And sum up above three equalities, we have

tr(Pl?lpl,O )+ t’“(Pz%Pz,o )+ tr(P£1P3,o)
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o T T
:éﬁo-l—(A API,O_PZ,Oe —P3’0, R1’1>+<P1’Oe’ R271>

+(ZpoP o+ XpePs0, Ry1)

o
= —al Bo + Po (R0 - Ry, Ryq) + B0 (Rg,0 — Rg1, Ro 1)
0 o oo
+ —EO (Rs3 0 — Rs1, Ry 1)
0

B T T T
= i (tr(Ri1 Ry ) + tr(Rg 1Ry o) + tr(Rs 1 R3 )

= 0.
Assume that the conclusions (3.1) and (3.2) hold for all j=0,i=1, 2,

-, 8, thenfor j =0,i=s+1, we have

o
tr(R17:3+1R1,0) = (Ry 0, Ry s __S(ATAPLS —P2,seT -Ps))
S

= (R0, Ry s) - Bs S(Ry o, ATAP , - Py " - P3,)
= (Ry0, Ry s) - Bs [(AT ARy o, Py s) — (Ry ge, Py)
- (Ry0, P35)],
tr(R3 5.1 Ro.0) = (R0, Ro s - Bs =P ge)
= (Ry 0, Ry s) — 2% B, = (Ry,0e, P15 ),

o
tT(R?EF,s+1R3,0) = (Rs3,0, R3 5 —B—S(Zk *P  +X,eP;))
S
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(04
=(R3 0, Ry )~ == (R30, Zp o P s + Xp o Py )
S

o
= (R0, R35) —B—SKZk ®Rs o, P s)+(X}, Ry, P55)l;
S

tr(R17:3+1R1,0 )+ tr(RzT,s+1R2,0 )+ tT(R?,T,s+1R3,0 )

_Y%s

Bs

~(Ry0e, Py g) +(~ Ry o+ X, e R3, P ¢))

T T
((A" ARy o + Ry ge” +Zp e R3, P 5)

o
= —=2((Po, Prs)+ (P20, Pos)+ (P50, P 5))
Bs

= 0.

o
tr(Pf,FsﬂPl,o) =(P,0, ATARLs + R2,s€T +Z, e Ry o +—LP ()

A

(04
- ;+1 (P Ps)+(Po0, ATARLS + R2,seT +Zk * Ry s)

S

o
- ;+1 (Po. P s)+(ATAP o, By o)+ (P e, Ry )

S

+(Zp o P o, Rss),

T Ost1
tr(Py,s:1Py0) = (Pa 9, — By se + (T Py )
S

(04
= ;+l (P20, Pos) —<P2,08T, R, ),
S

o

T
tr(Ps :1Ps.0) = (Py.g, Zp ® By s + Xj @ Ry o + 1Py )

Qs

(04
= ;—H<P3,o, Py )+ (P, — Ry g+ X ¢ Ry )
S
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o
- (i+1 <P3,O’ P3,S>_<P3,O’ Rl,s>+<Xk .P370’ R3’S>;
S

tr(Pli,Fs+1P1,0)+tr(P2T,s+1P2,o)+t’“(P?fsﬂP:a,o)
T T
=(A AP, o — Py e’ — Py, Ry )+ (P06 Ry )

+(ZpoP o+ XpePs0, Ry )

= 2—0<R1,0 -Ri1, R ) +B—0<R2,0 -Ryq, Ry )
0 g

+ 5—0<R3,o ~ Ry 1, Ry )
0

= 0.

By the principle of induction, the conclusions (3.1) and (3.2) hold for all
i=0,1,2, -, k.

Step 2. Assume that
tr(PLP )+ tr(PL Py ) + tr(PL iP5 ) = 0,
tr(RT;Ry )+ tr(RY Ry ) + tr(R4 ;Rs ) = O,
holdforall 0 <i <k and 1 < s+1 < i, show that
tr(PLiPy a1 ) + (P 1Py gu1) + tr(Ps 1Py 541) = O,
tr(R{ By 1) + (RS Ry 1) + tr(R3 iRy 1) = 0.
The proof are following:

T o T T
tr(Ri iRy 1) = (Ry s Ry s —B—S(A AP s - Py e — Py )
S

o
=(Ry;, Ry s) ‘B—S<R1,i, ATAP - Py et - Py )
S
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Og T
= <R1,i’ Rl,s> - _l3 [(A ARl,i’ Pl,s> - <R1,ie’ P2,5>
S

- (Ryi» P3 5)],

s

tr(R} iRy, s11) = (Ro s Ry s — B
S

Py ge)
= (Ry;, Ry ) _g_:<R2,ie’ P ),
tr(R3 ;Rs 511) = (Ry ;. R _a_:(zk o P +XpoPs5))
=(R3;, Ry s) —E—S<R3,i, ZpeP s+ XpoPsy)
=(Rs;, Ry 5) —a—:KZk o Ry, P )+ (X Ry, Pyg)l;

tr(RfiRl,s+1 )+ tr(R2T,iR2,s+1 )+ tr(Rg:iRS,SH)

(0]

Bs ((ATARy ; + Ry e +Z o Ry, P )
S

~(Ry e, Py )+ (-~ Ry ; + X}, Ry j, P35))

o oy
= ——Bs (Pl,i+1 - é:l Pl,i’ P1,s>
S 13
Py iyt — L Py Py N+ (Py iy — 2L P Py L))
2,1+1 o 2,10 12,8 3,i+1 o; 3,i> £3,s
13

a T
- B—S [tr(P17,qi+1P1,s )+ tr(PQC,Fi+1P2,s )+ tr(Ps ;11Ps 5 )]
S

o0 T r r
+ E al_irl [tr(P ;P g)+tr(Ps Py s ) +tr(Ps ;Ps s)] = 0.
i 2
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T T T o
tr(Pl,iP1,5+1) = <P1,i’ A ARl,s + R2,se + Zk i R3,s + ;+1 Pl,s)
s

o
= =S (P;, Pg) + (P ATAR  + Ry o' + Zy o Ry )
S

o
= ==L(p P )+ (ATAP Ry )+ (P e, Ry )

Qs

+(Zp ® Pi, Ry 5),

o

s+1 P2,s>

T
tr(Py, Py g11) = (Py i, — By se + o
S

o
- ;—H<P2,i’ Py ) _<P2,ieT’ Ry ),
S

T o
tr(Ps iPs s.1) = (Psjs Z, o Ry s + X}, e Ry ¢ + ;H Ps )

S

o
= ;—H<P3,i’ Py )+ (Psi,— Ry s+ X, oRg )

S

o
= - (Tl (P3,is Py ) —(P3 i, By ) + (X}, » Py, R34 );

S
T T T
tr(PL Py g41)+ tr(Ps Py g11) + tr(Ps iP5 g.1)
T T
=(A AP ; - Py je” —Ps;, R )+ (P je, Ry ;)

+(Zp o P o + X ePs;, Ry )

B; Bi
=—(Ry; — Ry 1, Ry ) +(X—L,<Rz,i - Ry i1, Ro )
l

12

+ %(RSJ - R3 i1, Ry )
1
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B T T T
= a_L [tr(RL i s )+ tr(Rg, iR s )+ tr(Rg, 1113 s )]

12

- Pl (RE Ry )+ (R iRy o)+ r(RE 1Ry ) = 0.

12

From Steps 1 and 2, we have by principle induction that the conclusions
(2.6) and (2.7) hold forall ¢, j = 0,1, 2, ---, k, i # J. O

Proof of Proposition 2.2. We use induction to prove this conclusion.

For i = 0, we have
tr[(AX - AXo ) Py o]+ tr[(AY = AYy) Py o]+ tr[(AZ - AZy) Py ]
= (AX - AXy, ATAR, o + Ry ge” + Z; o Ry )
+ (AY =AYy, — Ry ge) +(AZ — AZy, — Ry o + X}, e R3 )
= (ATA(AX - AX,), Ry o) +{(AX - AXy)e, Ry )
+(Zy, o (AX — AXy), Ry ) +{(AY - AYp)e”, - Ry )
+{(AZ = AZy), = Ry o)+ (X * (AZ - AZy), R3 )
= (ATA(AX - AX) - (AY - AYy)e! —(AZ - AZy), Ry )
+ ((AX — AX()e, Ry ) + (Z o (AX — AX,)
+ X}, ¢ (AZ - AZy), Ry )
= ||R1,0||2 + ||R2,0||2 + ||R3,0||2~
Assume (2.8) holds for i = s. Since

= T = T
tr[(AX — AX 1) Py g ] +tr[(AY =AY ) Py giq]
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= T
+tr[(AZ = AZg,1) Py giq]
= (AX — AX 1, ATAR) ;1 + Ry g e” +Zj o Ry 1)
Osi1 /2%
+_0, <AX—AXS+1’P1,S>
S

Gsi1
o

+(AY —AYyy, - Ry gqe) + (AY =AY, Pog)

S

+ (AZ ~AZgq, — Ry g1+ Xp o Ry o1q)

+%<AZ_ AZs+1’ P3,s>
s

= (ATA(AX - AXg,1), Ry g )+ ((AX - AX,,1 )e, Ry gi1)
+ <Zk b (A}_( - AXg )’ R3,s+1> + <(AY - AYgq )eT’ - Rl,s+1>

+ <(AZ - AZs+1 )a - Rl,s+1> + <Xk ° (AZ - AZs+1 )’ R3,S+1>

o = o
+;_H[<AX_AXS __SPLS’ Pl,s>
s

S

+ <A?_AYS _&Pls’ P2,s>+<AZ_AZs _%PS,S’ P3,s>]
s s

= (ATA(AX - AX,41) - (AY =AY q)e” —(AZ - AZg,q), Ry i)

+ <(A‘)—( - AXs+l)e’ R2,s+1> + <Zk ® (A‘)—{ - A‘Xvs+1)

— a —
+ Xk ® (AZ - AZs+1)’ R3,s+1> + ;+1 [(AX - AXS’ Pl,s)
s

+(AY =AY, Py )+ (AZ - AZ, P3 )]
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o o
_;_HB_SKPI,S’ Pl,s> + <P2,s’ P2,s> + <P3,s’ P3,s>]
s s

=By sl® + 1Ry 51 |” +1|Bs o I

Hence the conclusion (2.8) holds by the principle of induction. O
Proof of Proposition 2.3. Let R;=diag(R;;, Ry;, R3;),

P; = diag(P, ;, Py ;, P3;), then the conclusions (2.6) and (2.7) in

Proposition 2.1 can be rewritten as tr(RiTRj) =0, tr(PiTPj) = 0 hold for
all i, j=0, 1,2,--, k, i # j, which imply that the matrix sequences
{R;} and {P;} are F-orthogonal sequences in the finite dimension matrix
space R32n+1)  Hence, it is certainly there exists a positive number
i <3n (2n+1) such that P, =0 and R; =0, (or P, =0 and R; # 0).
These conclusions imply that Algorithm 2.1 will break down within finite
iteration steps in the absence of roundoff errors. Noting that R, ;, Ry ;,
and Rj; are, respectively, the residual of the first equation, the second
equation, and the third equation of the matrix equations (2.2) (or (2.4)) at
step i, then, if B, = 0 and a; = 0, the matrix equations (2.2) (or (2.4)) is
certainly solvable and (AX;, AY;, AZ;) is its a solution. If B; = 0 and
o; # 0, then the matrix equations (2.2) (or (2.4)) has no solution.
Otherwise, if the matrix equations (2.2) (or (2.4)) is solvable and a; # 0,

then we know from Proposition 2.2 that f; # 0. O



